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ABSTRACT

Aim Ixodes scapularis is the most important vector of human tick-borne patho-
gens in the United States, which include the agents of Lyme disease, human babe-
siosis and human anaplasmosis, among others. The density of host-seeking I.
scapularis nymphs is an important component of human risk for acquiring Borrelia
burgdorferi, the aetiological agent of Lyme disease. In this study we used climate and
field sampling data to generate a predictive map of the density of host-seeking I.
scapularis nymphs that can be used by the public, physicians and public health
agencies to assist with the diagnosis and reporting of disease, and to better target
disease prevention and control efforts.

Location Eastern United States of America.

Methods We sampled host-seeking I. scapularis nymphs in 304 locations uni-
formly distributed east of the 100th meridian between 2004 and 2006. Between May
and September, 1000 m2 were drag sampled three to six times per site. We developed
a zero-inflated negative binomial model to predict the density of host-seeking I.
scapularis nymphs based on altitude, interpolated weather station and remotely
sensed data.

Results Variables that had the strongest relationship with nymphal density were
altitude, monthly mean vapour pressure deficit and spatial autocorrelation. Forest
fragmentation and soil texture were not predictive. The best-fit model identified
two main foci – the north-east and upper Midwest – and predicted the presence and
absence of I. scapularis nymphs with 82% accuracy, with 89% sensitivity and 82%
specificity. Areas of concordance and discordance with previous studies were dis-
cussed. Areas with high predicted but low observed densities of host-seeking
nymphs were identified as potential expansion fronts.

Main conclusions This model is unique in its extensive and unbiased field
sampling effort, allowing for an accurate delineation of the density of host-seeking
I. scapularis nymphs, an important component of human risk of infection for B.
burgdorferi and other I. scapularis-borne pathogens.
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INTRODUCTION

Ixodes scapularis Say, commonly known as the deer tick or black

legged tick, is the vector of Borrelia burgdorferi, Babesia microti

and Anaplasma phagocytophilum, aetiological agents of Lyme

disease, human babesiosis and human anaplasmosis, respec-

tively, as well as other pathogenic agents. Lyme disease is the

most frequently reported vector-borne disease of humans in the

United States, with approximately 20,000 reported cases per year

and increasing incidence. The steady increase in reported inci-

dence is due to both increased recognition and geographic

expansion of endemic areas (Bacon et al., 2008). Human babe-

siosis and anaplasmosis, both of which have life-threatening

potential, are also increasing in incidence, and co-infection of

ticks with multiple pathogens can cause difficulties in diagnosis

and treatment, and may result in more severe disease (Krause

et al., 2002).

Lyme disease surveillance based on human case reports is

complicated by both underreporting and overdiagnosis (Bacon

et al., 2008), often resulting in inaccuracy of the true geographic

distribution of disease risk. Accurate information on spatial pat-

terns of risk for exposure to vector ticks is essential for the public

to make informed decisions regarding how to avoid high-risk

areas and for the medical community to consider a diagnosis of

tick-borne disease (Piesman & Eisen, 2008).

The construction of an accurate map showing the spatial

distribution and density of I. scapularis in the United States has

been limited by passive and non-standardized collection

methods. Ixodes scapularis habitat suitability models for the

United States have been developed by Brownstein et al. (2003)

and Estrada-Peña (2002). These models were based on I. scapu-

laris distribution data from Dennis et al. (1998), in which US

counties were classified into those with ‘established’ or

‘reported’ I. scapularis populations, based on a review of pub-

lished sources and questionnaires. Ixodes scapularis was

assumed to be absent in counties where no reports were found,

which is likely to have resulted in significant biases. Another

limitation of these models is that they include data from all life

stages, whereas only the nymphal stage has been found to have

a significant role as a vector for B. burgdorferi in North America

(Mather et al., 1996; Stafford et al., 1998; Falco et al., 1999).

This distinction is important, because although I. scapularis

populations are present in southern states, host-seeking

nymphs are rarely collected (Cilek & Olson, 2000; MacKay &

Foil, 2005; Goddard & Piesman, 2006) and very rarely bite

people (Felz et al., 1996; Merten & Durden, 2000). This is con-

sistent with the very low numbers of human cases reported in

southern states and the absence of culture-confirmed cases

(Bacon et al., 2008).

We have developed a spatial model of host-seeking I. scapu-

laris nymphs to more accurately reflect the risk of exposure to

humans. The model is based on a 4-year survey to generate a risk

map for human infection with nymphal I. scapularis-borne B.

burgdorferi throughout the range of the vector in the United

States (Diuk-Wasser et al., 2006). Human risk of infection

(‘entomological risk’ sensu Mather et al., 1996) is estimated by

the product of the density of host-seeking I. scapularis nymphs

and their infection prevalence with different pathogens. We

report here on the density of host-seeking I. scapularis nymphs

(hereafter ‘nymphs’) component of risk. We used the dragging

methodology, which provides the most sensitive measure of

potential contact between ticks and humans (Falco & Fish, 1992;

Mather et al., 1996).

In order to generate a continuous probability surface of the

risk of encountering nymphs in the United States, we predicted

nymphal density using remotely sensed data as in previous

models of I. scapularis habitat suitability (Glass et al., 1995;

Dister et al., 1997; Kitron & Kazmierczak, 1997; Guerra et al.,

2002; Ogden et al., 2006) as well as interpolated weather station

data. This model can be used by public health agencies to better

target surveillance and prevention measures to higher-risk areas.

In addition, the establishment of a baseline distribution of host-

seeking I. scapularis nymphs in the United States and an under-

standing of the climate drivers of this distribution are essential

to any effort to monitor future expansion/retraction of human

risk of diseases associated with this tick due to changes in

climate or land use.

METHODS

Tick sampling scheme

The details of the sampling methodology are described in

Diuk-Wasser et al. (2006); a summary is provided here. The

study area included all of the continental United States east of

the 100th meridian (37 states), encompassing the known dis-

tribution of I. scapularis. A spatially stratified random design

was used by setting up a 2° sampling grid across the study area,

and state parks or other publicly accessible forested areas were

randomly selected within each grid cell. We sampled a total of

304 sites between 2004 and 2006, 30 of which were repeatedly

sampled in 2 or 3 years, resulting in a total of 348 site-year

samples. In 2004, one site was sampled per grid cell, for a total

of 96 sites. Only nine nymphs were collected in 38 grid cells in

the southern United States, which were identified as a statisti-

cally significant low-density cluster (Diuk-Wasser et al., 2006).

We excluded these grid cells from the sampling scheme in 2005

and 2006 to focus our sampling efforts on areas with high and

more variable nymphal density. We sampled two sites in 2005

and two different ones in 2006 in each of the ‘northern’ grid

cells, for a total of five sites per grid cell. Within each site, we

measured relative nymphal density by drag sampling of closed-

canopy deciduous forest habitats along five 200-m transects,

with ticks collected from the drag cloth every 20 m to avoid

fall-off. To capture the host-seeking phenology of I. scapularis

nymphs, we visited sites a median of five times during late

spring and summer, when nymphs had been reported to

actively seek hosts in the north-eastern United States (Fish,

1993). Sampling was performed between 19 May and 27 August

in 2004, 9 May and 4 October in 2005 and 10 May and 30

September in 2006.

Climate-based model for Lyme disease nymphal ticks
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Environmental covariates

Weather station-derived climate data

We extracted meteorological data from spatially continuous,

daily meteorological surfaces for the United States with a spatial

resolution of 8 km ¥ 8 km produced by the NASA Terrestrial

Observation and Prediction System (TOPS) (Nemani et al.,

2007). TOPS utilizes the surface observation and gridding

system (Jolly et al., 2005) to input daily observations of

maximum temperature (TMAX), minimum temperature

(TMIN), dew point temperature and solar radiation from

approximately 3000 meteorological stations throughout the

United States. These variables are then interpolated from the

station observations to spatially continuous grids following

Thornton et al. (1997). The interpolation algorithm also

accounts for effects of elevation differences on temperature and

precipitation using an empirical relationship calculated for each

daily grid from observations using a weighted least squares

regression (Thornton et al., 1997). In addition, interpolated

average saturation vapour pressure deficit (VPD) surfaces were

generated by estimating the average daytime VPD at each

meteorological station from observations of daily average,

minimum, and dew point temperatures, following Thornton

et al. (1997):

VPD s a d= ( ) −e T e (1)

where es(Ta) is the saturated vapour pressure at the average

daytime site temperature Ta (°C), and ed is the ambient vapour

pressure. Vapour pressures were calculated following Murray

(1967).

Using erdas Imagine v.9.1 (Leica Geosystems, Atlanta, GA,

USA), we computed the annual mean for the monthly average of

each climate variable between 1986 and 2005. This 20-year

period was chosen to characterize long-term climate. We also

performed temporal Fourier analysis (TFA) on the TMAX and

TMIN data sets, deriving the detrended annual amplitude and

phase and biannual amplitude and phase. Amplitude is the

maximum variation of the cycle around the mean and phase is

the timing of the cycle. In TFA, the trajectory through the year

(the sequence of 12 monthly images) of every pixel in the envi-

ronmental time series is described by a series of orthogonal sine

curves (cycles/harmonics) with different frequencies. TFA

removes noise from the seasonal data, achieves data reduction

and produces a set of uncorrelated outputs while retaining a

description of seasonality. It is commonly used to study the

distribution of vectors (Rogers & Randolph, 2003).

Remotely sensed climate and vegetation index data

Remotely sensed data were derived from the Advanced Very

High Resolution Radiometer (AVHRR) instrument on board

the National Oceanographic and Atmospheric Administration

(NOAA) series of satellites for the period 1982–99, at 8 km ¥
8 km pixel resolution. TFA was applied to channel 3 middle

infrared (MIR), land surface temperature (LST) and the

normalized difference vegetation index (NDVI) by the Trypa-

nosomiasis and Land-use in Africa (TALA) Research Group of

the University of Oxford, from whom the data was obtained

(Hay et al., 2006). The annual and biannual mean, amplitude

and phase products for MIR, LST and NDVI were used in the

current study.

Altitude

Altitude (ALT) was derived from a seamless digital elevation

model (DEM) mosaic (Earth Resource Data Analysis System,

Atlanta, GA, USA) created from about 1500 individual files of

USGS 1:250,000 digital terrain data. The 300-m grid spaced

raster was used in this study.

Forest fragmentation

Forest fragmentation maps were derived from a global assess-

ment of forest fragmentation (Riitters et al., 2000). The frag-

mentation index was calculated from existing global land-cover

characterization 1-km land-cover maps (Loveland et al., 2000).

To derive the index, the proportion of forest pixels in a 9 km ¥
9 km pixel moving window was calculated for all pixels in the

image. The result was stored at the location of the centre pixel.

Thus, a pixel value in the derived map refers to ‘among-pixel’

fragmentation around the corresponding forest location.

Soil texture

Soil texture data were derived from the US General Soil Map

(STATSGO2) database (United States Department of Agricul-

ture, 2006) and gridded to an 8 km ¥ 8 km resolution using

TOPS. The percentages of sand, clay and silt were calculated for

the continental United States.

Model development

Environmental data processing

We projected all data sets used in the analysis to a Lambert

azimuthal equal area projection, which accurately represents

area in all regions of the globe, with the projection centred at

-100° longitude, 45° latitude to minimize distortion of the study

area. Each study site was considered as a point obtained by

averaging the latitude and longitude of the start of all transects

at the site. We extracted the values of the pixels corresponding to

each site from all environmental rasters (ArcMap software,

v.9.1, ESRI, Redlands, CA, USA). When the site occurred at a

pixel with missing information, we assigned it the average of the

value in neighbouring pixels in a 3 ¥ 3 or 5 ¥ 5 window. The

extracted values were standardized by subtracting the mean and

dividing by the standard deviation prior to inclusion in predic-

tive models of the density of I. scapularis nymphs.

Tick density data processing

To obtain a synthetic measure of nymphal density collected

throughout the season for a given site in a given year, we

M. A. Diuk-Wasser et al.
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calculated a weighted mean of the density of host-seeking

nymphs per 200-m transect by: (1) calculating the mean

number of I. scapularis nymphs collected per visit, averaging the

collections from the five transects; (2) calculating the area under

the line formed by the mean number of I. scapularis nymphs

collected per visit over the whole season; and (3) dividing this

area by the total number of days elapsed between the first and

last sampling visit for a given year, to obtain a daily mean density

measure. To examine whether differences in nymphal activity

patterns may affect regional comparisons of this density

measure, we compared the weekly distribution of mean

nymphal density between sites with at least five sampled nymphs

in the north-east and Midwest. We found that the distributions

were not significantly different (two-sided Wilcoxon signed-

rank test, n = 16 weeks, x � 9, P = 0.8) (see Fig S1 in Supporting

Information).

Statistical analyses

We developed a zero-inflated negative binomial (ZINB) regres-

sion model for the expected density of nymphs using the envi-

ronmental covariates as predictors (countreg procedures, sas

software, SAS Institute Inc., Cary, NC, USA). The distribution

assumption behind the ZINB regression model is a mixture of

two discrete probability distributions or ‘components’. The first

component (i.e. the ‘zero-inflated’ component) estimates the

probability that the observation was a result of sampling from

the point mass at zero, indicating a 100% probability of observ-

ing a zero when sampling from this distribution. The second

component (i.e. the ‘negative binomial’ component) estimates

the expected value assuming the observation is a result of sam-

pling from a negative binomial distribution. The distribution of

data arising from a mixture of these two distributions resembles

a negative binomial distribution with a disproportionately high

number of zeros. Such mixtures of distributions are common

when a sample contains two types of observations probably

driven by different ecological processes. In the case of host-

seeking I. scapularis nymphs, behavioural differences in ‘south-

ern’ I. scapularis reduce the probability of collecting a host-

seeking nymph to almost nil, so these samples would follow a

probability distribution with all of its mass at zero. ‘Northern’

sites, where there is a positive probability of observed host-

seeking nymphs, would follow a negative binomial distribution.

Each component of the ZINB regression model uses a

component-specific set of covariates to predict the respective

values. The two estimates are combined to produce an overall

prediction as seen in equation (2). The model can then be

viewed as a combination of a logistic regression model predict-

ing presence/absence and a negative binomial model predicting

tick density:

ˆ ˆ ˆ ˆ ˆ ˆ . . .Y P P x x= ( )( ) + −( ) + + +( )⎡⎣ ⎤⎦0 1 0 1 1 2 2exp β β β (2)

where P is the probability that the observation was a result of

sampling from the point mass at zero:

ˆ ˆ ˆ ˆ . . . ˆ ˆ ˆ . . .P z z z z= + + +( ) + + + +( )[ ]exp expγ γ γ γ γ γ0 1 1 2 2 0 1 1 2 21
(3)

and β̂0 , β̂1, β̂2 and γ̂ 0, γ̂ 1 , γ̂ 2 are estimated coefficients for the

respective negative binomial and zero-inflated components of

the model and x1, x2, . . . and z1, z2 . . . are predictors for the

respective negative binomial and zero-inflated part of the

model.

To assess the robustness of the variables selected in the analy-

sis, the data set was split randomly into a training (n = 172) and

a testing (n = 176) data set. Extensive data exploration and

model testing was conducted using the training data set. To

make sure we did not identify any false positive relationships

during the data exploration phase of analysis, we tested the best

model identified with the training data by applying it to the

remaining data, the ‘testing’ data set.

Data exploration steps

To select the variables to include in the ZINB model, we first ran

a stepwise logistic regression to identify environmental predic-

tors of nymphal presence or absence. During the second phase

of the analysis we included the selected covariates in the zero-

inflated component of the ZINB regression model. If residuals

were found to be significantly autocorrelated by a Moran’s

I-test, an autocovariate term (Dormann et al., 2007) was

included in the model to remove spatial autocorrelation and

improve the fit. This term was calculated as an inverse distance-

weighted average of the response values within a defined neigh-

bourhood around a given site i:

Ai w yij j

j ki

=
∈
∑ (4)

where ki is the set of neighbours included in a specified radius, yj

is the response value at site j and wij is the inverse-distance

weight given to site j’s influence over site i. The radius

(227,655 m) that resulted in at least one neighbour for all sites

was used. Other radii were explored, but did not result in a

significant reduction in the Akaike information criterion (AIC),

so were not used further in the analysis. The autocovariate term

removed spatial autocorrelation of the residuals and improved

the model fit (lower AIC).

Improvements of the model fit were evaluated in an auto-

mated fashion by including one or two additional variables in

each component of the ZINB. Those models for which all vari-

ables were significant at P � 0.05 in the ZINB model using the

training data were sorted by AIC. The top three models based on

the lowest AIC were identified and evaluated using the testing

data set. These three models were further evaluated by cross-

validation root mean squared error (RMSE) and examination of

the distribution of chi-square residuals. The final model was

validated by running it with the testing data set and verifying

that all variables remained significant and the trends observed

with the training data set persisted. For optimal estimates of the

Climate-based model for Lyme disease nymphal ticks
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regression parameters, the final values were obtained by using

the entire data set.

Mapping

TOPS-derived climate and soil rasters and the AVHRR-derived

rasters had an 8 km ¥ 8 km cell size. Altitude and forest frag-

mentation were resampled to the same cell size using a nearest-

neighbour interpolation. The values of the autocovariate term

calculated for each sample point were interpolated using inverse

distance weighting to obtain a continuous surface, also at 8 km

¥ 8 km cell size. We estimated the expected value for nymphal

density from the ZINB autocovariate model for each pixel using

equation (2).

RESULTS

A total of 5332 nymphs were collected at 304 sites between

2004 and 2006. Nymphs were found in 94 of these 304 sites,

with total ticks collected per year in positive sites ranging from

1 to 507 (Table S1). The weighted mean ranged from 0 to 20.26

per 200 m transect. Out of the 36 states sampled, no nymphs

were collected in 13 states and only 9 nymphs were collected

from the other ‘southern’ states (Table 1). Of the 30 sites where

repeated samples were obtained over 2 or 3 years, 15 were con-

sistently negative, 9 consistently positive and 6 had both posi-

tive and negative years, but with less than 0.45 nymphs per

200-m transect in the positive year (except Foot Hills State

Forest, MN) (Table S1).

Table 1 Weighted mean density of
host-seeking Ixodes scapularis nymphs
per 200-m transect by state and region
(2004–06).

Region State

No. of

sites

Nymphs per 200-m

transect (SD)

Total nymphs

per state

Midwest WI 22 3.16 (4.65) 1512

IL 19 0.65 (1.11) 225

MN 26 0.60 (1.45) 370

MI 27 0.30 (1.34) 178

IN 13 0.24 (0.48) 67

OK 4 0.04 (0.06) 5

MO 16 0.03 (0.04) 7

IA 25 0.01 (0.02) 4

KS 7 0.00 0

ND 5 0.00 0

NE 10 0.00 0

OH 14 0.00 0

SD 7 0.00 0

North-east and Mid-Atlantic CT 2 6.43 (3.40) 282

RI 1 5.61 77

MD 6 2.49 (2.84) 453

NY 21 2.37 (4.67) 1368

NJ 3 2.27 (1.57) 128

MA 4 1.35 (1.27) 139

ME 11 0.73 (1.82) 202

PA 17 0.69 (1.34) 217

VT 2 0.24 (0.34) 16

VA 12 0.17 (0.42) 65

NH 4 0.11 (0.14) 8

South NC 15 0.01 (0.02) 5

SC 7 0.01 (0.01) 2

AL 3 0.00 (0.01) 1

GA 6 0.00 (0.01) 1

AR 2 0.00 0

FL 2 0.00 0

KY 8 0.00 0

LA 1 0.00 0

MS 6 0.00 0

TN 1 0.00 0

TX 8 0.00 0

WV 11 0.00 0

The number of sites sampled (recorded twice when there were repeated samples) and the total
number of nymphs collected per state are also reported.
Within regions, states are listed by decreasing mean number of nymphs sampled.

M. A. Diuk-Wasser et al.
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The stepwise logistic regression performed as part of the

exploratory phase resulted in a model including a negative asso-

ciation with ALT and VPD monthly mean and a positive asso-

ciation with MIR biannual amplitude and TMAX monthly

mean (Table S2). No nymphs were found above a threshold

altitude of 510 m (negative coefficient) but no linear relation-

ship was observed between altitude and nymphs below that

point (Fig. S2). When we entered the variables selected from the

logistic regression model into the zero-inflated component of

the ZINB, MIR biannual amplitude and TMAX monthly mean

dropped out of the model and the residuals of the resulting

model were found to be autocorrelated. We ran the ZINB model

with the remaining two variables (ALT and VPD monthly mean)

and an autocovariate term (AUTOCOV) included in the nega-

tive binomial component to account for spatial autocorrelation.

A total of 300,459 models were generated by adding one or two

additional variables to each component of the ZINB. Models

containing any non-significant (P > 0.05) covariates were

rejected, leaving 1250 models. The AIC of the three top models

ranged from 440.9 to 449.2 (Table S3). Both the first and third

models showed higher values of the root mean square error

(RMSE) and more extreme residuals than the second model. In

addition, a Moran’s I-test showed that the inclusion of the auto-

covariate term failed to completely remove autocorrelation of

the residuals for the third model. We therefore selected the

second model as the one with the ‘best’ fit, even if the square of

NDVI annual amplitude was only significant at P < 0.1 when it

was run with both the training and testing data sets (Table 2).

Consistent with our previous analysis of the first-year collec-

tion (Diuk-Wasser et al., 2006), two main foci of host-seeking I.

scapularis nymphs were identified, one from northern Virginia

to Maine along the Atlantic seaboard and another one in the

upper Midwest (Fig. 1). The final ZINB model correctly pre-

dicted 82% of sites as either positive or negative, with a sensi-

tivity of 89% and specificity of 82%. The robustness of the

model can be assessed by analysing the chi-square residuals. Of

348 site-year samples, 10 sites had chi-square residuals larger

than 2 (‘high’), three of which were larger than 4 (‘extreme’)

(Fig. 1). All residuals > 2 were positive, indicating that the model

tended to underestimate nymphal density. Two of the high

residuals resulted from a prediction of zero nymphs and one

observed nymph in two southern locations (Pawnee Bill Ranch

and Oak Mountain State Park). Another southern site (Osage

Hill State Park, OK) also presented an extreme residual (pre-

dicted 0, observed 4). Extreme residuals were also found in a site

in Pennsylvania (Parker Dam State Park) and in Michigan (Van

Buren State Park).

DISCUSSION

We developed a predictive model for the density of host-seeking

I. scapularis nymphs in the United States that integrates different

environmental drivers and accounts for spatial autocorrelation.

This is the first zoonotic disease risk-modelling project based on

standardized field data collected throughout the national distri-

bution of a vector species. The unbiased nature of the sampling

design, including a large number of both positive and negative

sites, results in a robust data set to validate prediction of species

presence/absence. The large sample of positive sites allowed for

the modelling of tick density in addition to presence/absence, in

contrast to the more typical approaches based on logistic regres-

sion and discriminant analysis techniques (Kalluri et al., 2007).

The use of a zero-inflated regression model allowed us to dis-

criminate among environmental drivers of presence/absence and

those driving the density of host-seeking I. scapularis nymphs.

The broad risk areas defined by the nymphal density model

were generally consistent with previous studies, with two main

foci in the north-east and the upper Midwest. In the north-east,

the highest nymphal densities were observed in Connecticut,

Rhode Island, Massachusetts, southern New York, New Jersey,

eastern Pennsylvania and Delaware. The counties predicted as

having high nymphal density in New York State matched the

reported endemic counties based on data for human Lyme

disease cases and I. scapularis (White et al., 1991) or data on

mammal infection with B. burgdorferi (Oliver et al., 2006). The

model performed poorly in western Pennsylvania, where it

failed to predict the presence of nymphs in a high-altitude area

near Elk County (extreme residual in Parker Dam State Park in

Clearfield County) and in Presque Isle State Park in Erie County.

Borrelia burgdorferi has been found in Peromyscus leucopus in

Table 2 Parameter estimates for
variables included in the zero-inflated
and negative binomial components of
the zero-inflated negative binomial
(ZINB) model (model 2 in Table S3).

Estimate Standard error t value PR > |t|

Zero-inflated

Altitude 3.79 0.93 4.05 < 0.0001

VPD monthly mean 4.89 1.31 3.73 0.0002

(TMAX annual amplitude)2 1.23 0.50 2.45 0.0143

(TMIN annual phase)2 2.42 0.65 3.74 0.0002

Negative binomial

Autocovariate term 0.44 0.10 4.28 < 0.0001

(NDVI annual amplitude)2 0.33 0.20 1.61 0.1069

Both training and testing records were included to improve model fit.
VPD, vapour pressure deficit; TMAX, maximum daily temperature; TMIN, minimum daily tempera-
ture; NDVI, normalized difference vegetation index; PR > |t|, 2-tailed P-value for testing the null
hypothesis that the parameter estimate is 0.
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Elk County (Lord et al., 1994) and both I. scapularis and B.

burgdorferi have been previously reported in Erie County

(Courtney et al., 2003). More sampling is warranted to delimit

the exact distribution of I. scapularis in these areas and their

relationship with the north-eastern focus.

In the upper Midwest, the model predicts high nymphal

density in all of Wisconsin, consistent with a proposed eastern

expansion of I. scapularis (Riehle & Paskewitz, 1996) from the

western Wisconsin risk areas predicted by Guerra et al. (2002).

The model prediction of nymphal presence in Minnesota closely

matched the reported areas of risk based on human case data

(Minnesota Department of Health, 2008). The presence of four

sites with both positive and negative years in the western limit of

the upper Midwest foci indicates an unstable presence of

nymphs in these border areas. A southward expansion front was

observed in the Illinois–Indiana border, with records south of

reported I. scapularis by Pinger et al. (1996), which was pre-

dicted by the model, although the density was underestimated.

We also observed high abundance of nymphs in Van Buren State

Park in south-western Michigan, reported as an invasion area by

Hamer et al. (2007). The model, however, underestimates the

density in that site (‘extreme’ residual) and underestimates the

extent of the northern expansion as reported by the Michigan

Department of Community Health (2004). The model also pre-

dicts higher nymphal densities than observed in southern

Michigan, northern Indiana and parts of Ohio, northern Maine

and coastal Virginia, which could represent potential future

expansion areas.

The absence and rarity of host-seeking nymphs in the south-

ern portion of the range of I. scapularis is consistent with other

studies (Cilek & Olson, 2000; Goddard & Piesman, 2006). While

I. scapularis populations are present in this region, the nymphs

have an altered feeding behaviour, presumably adapted to

lizards and skinks, and cannot be sampled by the drag-cloth

method used in this study. However, the drag-cloth collecting

method is directly correlated with human contact with host-

seeking ticks and is a direct measure of risk for tick bites (Falco

& Fish, 1989). The absence of host-seeking nymphal I. scapu-

laris in most southern states suggests that reported cases from

this region are due to either misdiagnosis or previous travel to

an endemic area.

The probability of finding nymphs was strongly driven by

altitude, VPD and seasonal variation in temperature. In positive

sites, the main driver for predicting nymphal density was the

presence of host-seeking nymphs in neighbouring sites, with a

weak association with environmental factors derived from

Figure 1 Weighted mean of host-seeking Ixodes scapularis nymphs observed and predicted under the second model with the lowest Akaike
information criterion (AIC) value (geographic coordinate system, GCS WGS 1984; projection, Lambert azimuthal equal area). Host-seeking
I. scapularis nymphs were collected between May and September of 2004–06. For sites sampled in multiple years, the average of the annual
weighted mean is provided. Sites where nymphs were collected in one year but not in others and those with model chi-square residuals
larger than two and four (‘extreme’) are shown.

M. A. Diuk-Wasser et al.

Global Ecology and Biogeography, 19, 504–514, © 2010 Blackwell Publishing Ltd510



remote sensing. Unlike previous studies performed at a more

detailed scale, we did not find significant effects of forest frag-

mentation (Brownstein et al., 2005b) or soil texture (Guerra

et al., 2002), indicating that climate overrides the potential effect

of these variables at a continental scale.

The density of host-seeking ticks of Lyme disease vectors in

Europe has been found to decrease with increasing altitude

(Jouda et al., 2004). Decreases in tick density with altitude have

sometimes been attributed to a simple effect of temperature

(Jouda et al., 2004; Cadenas et al., 2007). However, the fact that

altitude is significant in our model while controlling for

temperature-derived variables suggests that other unmeasured

variables may be affected along an altitudinal gradient. The

strong predictive power of VPD on the density of host-seeking

nymphs is consistent with other studies (Estrada-Peña, 2002;

Guerra et al., 2002; Brownstein et al., 2003). Water stress and

high temperatures are hypothesized to regulate tick populations

by decreasing tick survival during off-host periods (Ogden et al.,

2004). Temperature and relative humidity can also regulate

host-seeking activity in Ixodes spp., with increased activity nega-

tively linked to saturation deficit and temperature and positively

to relative humidity (Vail & Smith, 1998; Randolph & Storey,

1999; Perret et al., 2000; Schulze & Jordan, 2003).

The presence of nymphal I. scapularis was also associated with

the annual amplitude and phase of TMAX and TMIN, respec-

tively. TFA of climate data have been successfully used in studies

of the distribution of vectors and disease (reviewed by Scharle-

mann et al., 2008), including tick-borne diseases (Randolph

et al., 2000). The effect of TFA-processed variables is complex.

TFA captures both the extremes in temperature and the rates of

autumn cooling and spring warming. Extreme winter tempera-

tures can limit the northern distribution of ticks by directly

killing the ticks (Ogden et al., 2004; Rand et al., 2004), inhibiting

host-seeking activity (Vail & Smith, 1998; Perret et al., 2000;

Schulze & Jordan, 2003) or limiting the availability of hosts

(Lindsay et al., 1995). A high rate of autumn cooling can also

affect tick population dynamics by limiting the time available

for larvae to find a host in the autumn, thus entering diapause

unfed, which potentially increases their mortality rate (Yuval &

Spielman, 1990). However, high rates of spring warming may

have an opposite effect, since it would result in faster accumu-

lation of degree-days for development, potentially leading to

earlier egg deposition and larval emergence (Lindsay et al.,

1995).

Remotely sensed environmental variables were found to be

less predictive of nymphal density than ground-based climate

data sets. Fourier-transformed NDVI and LST derived from

AVHRR, however, were present in two of the models with the

lowest AIC, in the negative binomial component of the equa-

tion. NDVI has been found in the past to be the most consis-

tently significant variable for predicting tick distributions and

has a sound biological basis in that it is related to availability of

moisture to free-living ticks and is correlated with tick mortality

rates (Randolph, 2000). The relatively low predictive value of

LST may be due to the presence of temperature in the same

model, to which LST is correlated (Green & Hay, 2002).

In sites with nymphs, the strongest predictor of nymphal

density was the autocovariate term. This term is intended to

capture spatial autocorrelation originating from endogenous

processes such as conspecific attraction, limited dispersal, con-

tagious population growth and movement of individuals

between sampling sites (Dormann et al., 2007). There is exten-

sive evidence indicating a recent and ongoing population expan-

sion of I. scapularis from past refuges throughout the north-east

(White et al., 1991) and the upper Midwest (Pinger et al., 1996;

Hamer et al., 2009), suggesting that the spatial dependence in

tick numbers may be due to a delay in the ticks occupying all

suitable habitats due to recent environmental changes, which

include reforestation, suburbanization and reintroduction of

deer (Barbour & Fish, 1993).

This map provides the first step towards a large-scale risk

model for Lyme disease. Strong links to climatic factors indicate

the potential for changes in future distribution of risk due to

climate change, as predicted by Brownstein et al. (2005a) and

Ogden et al. (2008). However, the exact response of host-seeking

nymphs may follow a different pattern from the distribution of

all stages modelled by previous studies, warranting further

research. The large geographic area covered by the map also

necessarily limits its spatial resolution. More localized studies in

areas identified as having high risk in this map are necessary to

identify environmental factors operating at finer spatial scales

and to provide guidance to local public health agencies and

individual homeowners regarding their risk.

Ixodes scapularis host-seeking density predicted by this model

has been shown to be positively correlated to Lyme disease inci-

dence (Mather et al., 1996; Stafford et al., 1998; Hubalek et al.,

2003). Despite the limitation of spatial resolution, our model is

useful for the education of the public and physicians on disease

risk at the state and in some areas perhaps county level. Host-

seeking nymphs were not found within most of the known

range of I. scapularis despite current and past reports of human

cases of Lyme disease. This model should be useful to public

health agencies to improve the targeting of surveillance, preven-

tion and potential future control efforts – such as human or

wildlife vaccination programmes, to areas with evidence of

entomological risk.
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SUPPORTING INFORMATION
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