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Abstract 
Increasingly, researchers use simulation to generate realistic population health data to evaluate surveillance and 
disease control methods. This evaluation approach is attractive because real data are often not available to describe 
the full range of population health trajectories that may occur. Simulation models, especially agent-based models, 
tend to have many parameters and it is often difficult for researchers to evaluate the effect of the multiple parameter 
values on model outcomes. In this paper, we describe Simulation Analysis Platform (SnAP) - a software 
infrastructure for automatically deploying and analyzing multiple runs of a simulation model in a manner that 
efficiently explores the influence of parameter uncertainty and random error on model outcomes. SnAP is designed 
to be efficient, scalable, extensible, and portable. We describe the design decisions taken to meet these requirements, 
present the design of the platform, and describe results from an example application of SnAP. 

Introduction 
Increasingly, researchers use simulation to generate realistic population health data to evaluate surveillance and 
disease control methods. This evaluation approach is attractive because real data are often not available to describe 
the full range of population health trajectories that may occur.  

As more data have become available and computing power has increased, simulation models have tended to become 
more complicated. Agent-based models in particular, where a distinct software object is used to represent each 
person in the model, tend to have many parameters. While parsimonious models are generally preferred, many 
parameters may be needed to generate realistic outcome data. Complex interaction patterns, often modeled as 
networks, can also be used to define the interaction of agents. As a result, in addition to requiring many parameters, 
these simulation models can be computationally intensive. A challenging problem results, therefore, where 
researchers should perform many simulation runs to evaluate the sensitivity of their findings to the multiple 
parameters in their model, but encoding many parameter sets and running the corresponding models is cumbersome 
and time consuming. 

In this paper, we describe Simulation Analysis Platform (SnAP) - a software infrastructure for automatically 
deploying and analyzing multiple runs of a simulation model in a manner that efficiently explores the influence of 
parameter uncertainty and random error on model outcomes. Although the initial development of this platform was 
motivated by a particular project, we designed SnAP to be suitable for a range of applications in public health 
research and policy-making. We begin by presenting a motivating research problem and then from this specific 
problem, we develop the general problem and system requirements. We then present our design for the platform, 
describe results from an example application of SnAP, and close the paper with a discussion of this work and 
identification of future directions. 

Motivating Research Problem 
Unfortunately, there are many examples of public health surveillance systems failing to detect massive infectious 
disease outbreaks (1; 2). In response to this reality, public health agencies have introduced new surveillance methods 
(3), but it is difficult to evaluate rigorously whether these new methods are effective (4). Such evaluation is critical 
to guide the appropriate adoption and use of new technologies for surveillance. As a specific example of this 
problem, we consider surveillance in an urban area to detect waterborne outbreaks due to the failure of a water 
treatment plant (5-8). Once such an outbreak is detected, the public health intervention is to issue a boil water 
advisory, which is maintained in place until water quality is returned to within normal limits (9; 10). 
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Laboratory-based surveillance is the standard approach used by most public health agencies to detect waterborne 
disease outbreaks in urban areas (11). In this type of surveillance, lab directors and physicians report to public health 
suspected and confirmed infections for diseases that are named in legislation. Lab surveillance is very specific, but it 
is neither sensitive nor timely (12-14). To augment this approach to surveillance, many public health departments 
have adopted syndromic surveillance (15), which follows healthcare utilization patterns and presenting symptoms of 
patients (16). This approach to surveillance is sensitive and timely, but not specific. The introduction of syndromic 
surveillance in this context raises questions of practical importance. For example, does syndromic surveillance offer 
any advantage over laboratory-based surveillance in this context? If so, how should these two approaches be 
configured to work together? 

To help answer these and other related questions, we developed a simulation model to represent water distribution, 
human mobility, exposure to drinking water, infection, disease progression, healthcare utilization, laboratory testing, 
and reporting to public health (17). This model first creates a synthetic population from census data and then uses 
approximately 30 parameters to define the progression of individuals through the model. We want to explore 
questions related to the effectiveness of boil water advisories under different outbreak scenarios and to examine the 
role of different surveillance approaches in detecting waterborne disease outbreaks. Additionally, the parameter 
values in this model are not known with certainty, and we want to incorporate this uncertainty into our simulation 
results.  

General Problem and Requirements 
To address problems similar to what we described above, many other researchers have developed simulation 
software that can be used to evaluate the ability of public health authorities to detect and control disease outbreaks 
(18). Conducting this research, however, requires completion of multiple complex and coordinated computational 
tasks, such as generating simulated data representing realistic outbreak scenarios, applying detection algorithms with 
different configurations to the generated data, estimating detection performance metrics such as sensitivity and 
timeliness, comparing the outcomes of the outbreaks with or without an intervention from public health agencies, 
and quantifying the costs associated with different scenarios. Moreover, due to a large number of factors possibly 
affecting the outcomes of interest, these tasks must be repeated many times with different inputs to the simulation 
model. Given the complexity of this research design, a software infrastructure that can support parameterization and 
execution of all the tasks in an efficient and convenient manner, is necessary to make such research feasible and 
reproducible. 

This problem is similar in some respect to the one faced by researchers in bioinformatics who must repeatedly 
perform a sequence of data manipulation and analysis on large data sets generated from sequencing, structure and 
expression experiments. To meet that need, analytical “pipeline” software was created, allowing researchers to 
assemble and connect visual analysis icons using a graphical interface, and then deploy the steps corresponding to 
the visual representation (19; 20). This pipeline software, however, is not flexible enough to support the types of 
simulation models and analytical methods required to evaluate public health surveillance. To our knowledge, no 
analytical pipeline exists to address our general problem. 

The purpose of SnAP is to provide a computational environment for running large-scale experiments using 
simulated data, with a primary focus on studies to evaluate the effectiveness of public health surveillance systems 
and disease control strategies. To meet this objective, the system must fulfill the following requirements: 

Efficiency. Simulations of population health, especially those that model individuals as software agents, tend to be 
computationally expensive. At the same time, in order to assess the effects of random error and parameter 
uncertainty on key outcomes, each simulation scenario must be repeated hundreds, or event thousands of times. 
Even more simulations are often required to explore systematically the effects of several configurable simulation 
parameters in one experiment. These factors make efficiency a primary requirement. 

Scalability. High-performance computing capacity continues to advance and the system should be able to take 
advantage of additional computational resources to decrease the overall run-time. 

Extensibility. Experimental analysis using simulated data has many applications. The platform should allow for 
application-specific extensions to be easily integrated with the rest of the system. 

Portability. In order to be practically useful for public health applications, the platform should be portable and 
support multiple hardware configurations and operating systems. 
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In the following section we present the design decisions made to develop a software system that meets these 
requirements. 

Design Considerations 
To meet both the efficiency and scalability requirements, an obvious strategy is parallel computing. Even though 
individual simulation runs can take significant time, a single simulation run is usually completed within hours or 
days. The real computational challenge stems from the necessity to repeat each run many times with different 
random number generator seeds or parameter values. This type of problem is known as embarrassingly parallel in 
that it does not require parallelization deeper than the level of individual runs (21). 

To facilitate task-level parallelization, we chose to use a modular design, where individual tasks or analytical steps 
are implemented independently, so that they impose no constraints on each other except for the format of input and 
output data. This choice allows the software for a task to be swapped with an alternative implementation or off-the-
shelf software. To allow moving and processing vast quantities of data, the platform must also provide flexible 
communication and data flow facilities. We decided to use of a text file interface with a standard well known syntax 
to ensure extensibility and portability. For portability considerations, we are using well-established, freely-available 
(primarily open-source) platform-independent tools and languages as a choice for implementation. 

Instead of using fixed values for uncertain simulation parameters, we find it informative to explicitly incorporate 
parameter uncertainty in the simulation results. A number of sampling methods have been proposed for this purpose 
(22).  These methods define an N-dimensional parameter space, where N is the number of parameters and each 
parameter follows a known probability distribution. Parameter values are then sampled from their respective 
distributions to ensure unbiased coverage of the parameter space. The simulation is run multiple times using a 
different sample of parameter values each run, generating a distribution of outcome variables that reflects parameter 
value uncertainty. Among different sampling methods, Latin Hypercube Sampling (LHS) has the advantage of 
producing an unbiased representation of the parameter space with a small number of samples compared to other 
methods, such as random sampling (23; 24). To produce M samples from an N-dimensional parameter space using 
this technique, each of the N parameter distributions is partitioned into M equally probable bins, and the value of 
each parameter is uniformly drawn from one of these bins, so that bin numbers do not repeat in any given sample. A 
reduced number of parameter samples entails fewer simulation runs, which is critically important to ensure 
efficiency. We have therefore chosen LHS as a technique to account for simulation parameter uncertainty.  

System Design 
Figure 1 displays a schematic overview of the simulation analysis platform that we have designed and we give 
below a detailed description of the system components and interfaces.  

(1) The outbreak simulator is the central component of the system responsible for generating the outbreak data that 
will form the basis of the intended analysis. As described above, we have developed an agent-based simulation 
model for generating realistic multivariate outbreak signals similar to historical waterborne outbreaks of 
gastrointestinal disease (17). The model takes as input an outbreak scenario and simulation parameters as described 
below. As output, the outbreak simulator generates spatially distributed counts of cases (infected, symptomatic, 
seeking care at ED or a physician, reported to local public health department, etc.) over time. The model was written 
in Java using Mason, a low-level discrete event simulation library allowing for flexibility and efficiency at the same 
time. 

(2) The outbreak simulator operates with a set of simulation parameters, which determine the shape of the generated 
outbreak signals. Simulation parameters can be categorized in two broad types: 1) a configurable parameter, which 
has an exact value defined in advance that can be varied experimentally, and 2) an uncertain parameter, which is 
represented by a probability distribution. Configurable parameters define an outbreak scenario and can be adjusted 
to conduct “what if” analyses, for example, examining the proportion of a population that will be infected when a 
certain level of pathogen concentration is maintained in drinking water for a particular duration of time. Uncertain 
parameters in our system are sampled from their respective distributions using LHS. Any specific analysis using the 
platform therefore involves a sizable set of simulation runs, in which both types of parameters can be varied. The 
results from this set of simulations represent a distribution of possible outbreak signals occurring under one or more 
outbreak scenarios and accounting for both random variation and parameter value uncertainty. 
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Figure 1. Schematic overview of SnAP. Numbers correspond to system components described in the article. 

To implement the process of generating this complex mix of variously typed simulation parameters, we have 
devised a simple description language based on the JavaScript Object Notation (JSON). JSON is a lightweight data-
interchange format that encodes data as name/value pairs and supports lists and nested objects (25). We create a 
parameter template, that defines a) the possible values of the configurable parameters in the simulation, and b) the 
distributions for all uncertain parameters. Consider an experiment (described in more detail later in the text) that 
examines several what-if scenarios by systematically varying two configurable parameters: duration of water 
contamination (p1) and the concentration of 
pathogen in the water (p2). Other parameters 
required in the simulation are uncertain 
parameters (i.e. they are governed by a 
probability distribution, and we want to 
sample their values with LHS). Figure 2 
displays a fragment of a parameter template 
file that defines such an experiment. The 
template is used by the parameter generator – 
a component in charge of creating a set of 
specific parameter configurations to be fed to 
a corresponding set of simulators deployed in 
parallel. The parameter generator derives the 
required number of parameter configuration 
instances, in the following way: 

1. Generate a Cartesian product of possible 
values of all configurable parameters 
defining outbreak scenarios. The total 

{ 
    "name": "p1_water_contamination_duration", 
    "values": [4, 72] 
}, { 
    "name": "p2_cryptosporidium_concentration", 
    "values": [0.001, 0.01, 0.1] 
}, { 
    "name": "p3_cryptosporidium_infectivity", 
    "name": "uniform", 
    "params": {"a": 0.05, "b": 0.15} 
}, { 
    "name": "p4_average_symptom_duration", 
    "distribution": "beta", 
    "params": {"a": 1, "b": 7, "min": 4, "max": 12} 
},  

… 

Figure 2. Parameter template specification example. 
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number of scenarios (experimental conditions in the analysis) is: 
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where V is the total number of configurable parameters, and Ki is the number of possible values of the i-th 
parameter. In the example above V=2, K1=2, K2=3, and therefore S=6. 

2. Generate M samples from an N-dimensional parameter space using LHS, where N is the total number of 
uncertain parameters in the simulation. Each sample will contain unique values for all N parameters. For our 
example, we use M=1000 (note that the number of samples is independent of N). 

3. From these, assemble the required set of parameter configurations, in which each outbreak scenario is combined 
with each of LHS samples.  

This would yield S × M parameter configurations in total (6000 in the example above) that can be fed to a 
corresponding set of outbreak simulations. 

(3) Public health surveillance systems never operate directly on the outbreak signal, but have to detect the signal 
from baseline or endemic disease activity. To represent this situation in our analysis, the outbreak signals in SnAP 
are superimposed on baseline data by the data mixer component, which produces the synthetic surveillance data 
that can be used for evaluation of detection algorithms. Depending on the nature of the outbreak signal, different 
baseline data streams should be used. For example, the counts of people seeking medical help at the ED generated 
by our simulation model are superimposed on baseline ED utilization data for gastro-intestinal diseases. In each 
outbreak, we randomly select the start of the signal relative to the baseline. 

(4) To determine which aspects of the baseline data affect detection performance, we must characterize the raw data. 
The baseline analyzer component computes a number of summary statistics on the baseline data, such as baseline 
mean and variance, trend, presence of weekly pattern, magnitude of yearly seasonality, and autocorrelation. 

(5) Similarly to baseline analyzer, the signal analyzer summarizes the features of the OB Signal that may affect 
detection performance, such as peak size (number of standard deviations above the baseline mean), overall duration, 
time from onset to peak.  

(6) For the purpose of the illustrative analysis, about 5 different detection algorithms used routinely in public health 
surveillance systems will be applied to the synthetic surveillance data. This part of SnAP is currently being 
implemented. The algorithms applied to surveillance data streams generate time series of binary alarms or outbreak 
probability that constitute detection data. 

(7) Each Algorithm has a number of parameters that can be adjusted to affect detection performance. To facilitate 
comparison, we have created a list of algorithm characteristics that are not specific to any particular algorithm, but 
can be used to describe all algorithms involved in the analysis (e.g., adaptive vs. non-adaptive, whether or not the 
day-of-week effect is modeled). The algorithm configurator component generates specific parameter configurations 
for the detection algorithms (similarly to LHS simulation parameter generator) and annotates each configuration 
using these general algorithms characteristics.  

(8) The initial outbreak signal is used to evaluate the performance of detection algorithms. Performance analyzer 
compares the detection data to the timing of the outbreak to determine if the outbreak was detected by the algorithm, 
and if so, on which day of the outbreak it was detected.  

(9) To quantify the effects of timely outbreak detection, we have implemented public health intervention in the form 
of a boil-water advisory in our simulation model. It is thus possible to compare the outcomes of interventions 
applied at different time points during the course of an outbreak with no-intervention scenario.  

Application of the System 
Study design 

As an example application of SnAP, we present a simple simulation study, in which we evaluate how the health 
burden of a waterborne cryptosporidiosis outbreak depends on the duration of water contamination and the 
concentration of the cryptosporidium pathogen in the source water. Qualitatively, it is clear how both factors are 
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likely to affect the infection rate. Quantitatively, however, the effect of these factors on the likely health burden from 
a waterborne outbreak in a particular geographical setting would be very challenging to estimate without an 
infrastructure like SnAP. The challenging nature of this analysis may explain why, to our knowledge, no researchers 
have yet conducted such a study.  

In our study, we simulated the failure of one of the water treatment facilities on the island of Montreal for durations 
of 4 hours and 72 hours. We used three concentration levels: 0.1, 1, and 10 oocysts per litre. These conditions yield 
a total of six water contamination scenarios, and we performed 1000 runs of the simulation model for each scenario 
to explore the contribution to the results of uncertainty in parameter values, as described in the System Design 
section. 

 
 

Figure 3. Results from application of SnAP to the example scenario, highlighting the incorporation of random error 
and parameter uncertainty into simulation results. The variation in attack rates (#infected/#exposed) over 1,000 
simulations is shown under two treatment failure scenarios and three concentrations of oocysts in the source water. 
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Results 

Application of SnAP for the scenario described above produced a range of results; we present those related to the 
LHS sampling. In Table 1, we display the mean of selected outbreak characteristics for each of the six outbreak 
scenarios. The 95% confidence interval for the mean of these characteristics summarizes the distribution over the 
1,000 simulation runs. In Figure 3, we explicitly display the distribution of the proportion of exposed that become 
infected for each of the six scenarios. These distributions allow assessment of the variation in these outcomes when 
both random variation and parameter uncertainty are considered in the model. Although we do not explicitly 
decompose the variation in this example in variation attributable to randomness and parameter uncertainty, we have 
demonstrated previously that the total variation is driven mainly by parameter uncertainty with random variation 
contributing a relatively small amount. 

Performance  

SnAP is currently implemented on a Top 500 supercomputer that forms part of the CLUMEQ network in Quebec. 
Its 960 nodes are highly optimized for the kind of intensive numerical analysis that our tasks require. A large 
number of simulations implied by the generated parameter configurations can be easily run in parallel via the 
standard queuing system, which we have slightly adapted to our particular needs with a simple Python script. To 
give an idea of our current level of computing performance, we have been able to complete 9000 simulation run in 
under 8 hours (although this figure is highly dependent on the number of available nodes in a certain time period, as 
this system is used concurrently by many research teams). By way of comparison, a single simulation run takes 
around 30 minutes on a normal desktop machine, and requires between 2 and 4 GB of memory. Given the simplicity 
and reliance of this setup, we are confident that it will scale reasonably well (i.e. almost linearly). 

Discussion 
We have described a platform for efficiently deploying multiple simulation runs in a manner that examines the 
sensitivity of model results to parameter uncertainty. The platform was designed to be efficient, scalable, extensible, 
and portable. We believe that our design meets these requirements, and we have used SnAP successfully to conduct 
many experiments, including evaluating the effectiveness of a boil water advisory to control waterborne outbreaks. 
Given the complexity of the research design required to evaluate public health outbreak detection and disease 
control through simulation, SnAP should make research more feasible, less error-prone, and more reproducible. 

	  	  
	  	  

Duration	  of	  
Treatment	  
Failure	  

Concentration	  of	  Contamination	  in	  Source	  Water	  

10	  oocysts	  /L	   1	  oocyst	  /L	   0.1	  oocysts	  /L	  

Average	  Number	  Infected	   4	  hours	   137,958	  (135,473	  -‐	  140,442)	   15,317	  (15,019	  -‐	  15,615)	   1,547	  (1,517	  -‐	  1,578)	  

72	  hours	   1,136,345	  (1,125,356	  -‐	  1,147,333)	   258,678	  (254,062	  -‐	  263,294)	   28,981	  (28,418	  -‐	  29,544)	  

Average	  Number	  
Symptomatic	  

4	  hours	   82,793	  (81,212	  -‐	  84,373)	   9,193	  (9,005	  -‐	  9,381)	   928	  (909	  -‐	  948)	  

72	  hours	   681,863	  (674,068	  -‐	  689,657)	   155,236	  (152,298	  -‐	  158,175)	   17,397	  (17,041	  -‐	  17,753)	  

Average	  Number	  Deaths	  
4	  hours	   11	  (10	  -‐	  11)	   1.2	  (1.0	  -‐	  1.3)	   0.1	  (0.1	  -‐	  0.1)	  

72	  hours	   93	  (86	  -‐	  100)	   20	  (19	  -‐	  22)	   2.2	  (2.0	  -‐	  2.3)	  

Infection	  Rate	  	  
(Infection	  /	  Exposed)	  	  

4	  hours	   0.099	  (0.097	  -‐	  0.101)	   0.011	  (0.011	  -‐	  0.011)	   0.001	  (0.001	  -‐	  0.001)	  

72	  hours	   0.719	  (0.713	  -‐	  0.725)	   0.164	  (0.161	  -‐	  0.166)	   0.018	  (0.018	  -‐	  0.019)	  

Attack	  Rate	  	  
(Symptomatic	  /	  Exposed)	  	  

4	  hours	   0.059	  (0.058	  -‐	  0.061)	   0.007	  (0.006	  -‐	  0.007)	   0.001	  (0.001	  -‐	  0.001)	  

72	  hours	   0.431	  (0.427	  -‐	  0.436)	   0.098	  (0.096	  -‐	  0.1)	   0.011	  (0.011	  -‐	  0.011)	  

Mortality	  Rate	  	  
(Deaths	  /	  Exposed)	  	  

4	  hours	   7.55×10-‐6	  (6.99×10-‐6	  -‐	  8.10×10-‐6)	   8.27×10-‐7	  (7.52×10-‐7	  -‐	  9.01×10-‐7)	   8.13×10-‐8	  (6.51×10-‐8	  -‐	  9.75×10-‐8)	  

72	  hours	   5.88×10-‐5	  (5.45×10-‐5	  -‐	  6.30×10-‐5)	   1.26×10-‐5	  (1.17×10-‐5	  -‐	  1.35×10-‐5)	   1.36×10-‐6	  (1.25×10-‐6	  -‐	  1.46×10-‐6)	  

Table 1 – Outbreak characteristics by duration of treatment failure and concentration of contamination in the source water. 
All estimates are followed by 95% confidence intervals that incorporate random error and parameter uncertainty.	  
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Although our file-based communication protocol between the components of the system has the advantage of 
simplicity and readability, it could possibly be improved by using a more flexible and centralized system. We have 
considered the use of a new kind of database derived from the so-called NoSQL paradigm, being currently 
developed very actively, especially in large-scale web environments. Databases of this type can be best understood 
as flexible and highly scalable key-value stores where the need for prior data type and schema definition is reduced 
to the minimum, and for which parallelization is one of the core architectural consideration. We think that such 
characteristics would fit well in our current architecture, and could potentially improve its overall performance and 
power. 

In addition to using SnAP to evaluate surveillance strategies and public health interventions, we also anticipate that 
this platform will support the systematic evaluation of surveillance algorithms and that the SnAP may even be able 
to help guide decision-making in near real-time. In terms of evaluating algorithms, SnAP can help to automate the 
application of algorithms to a range of outbreak signals and the evaluation of the performance of those algorithms. 
Moreover, the platform can characterize the baseline data and signal characteristics in a consistent manner. All of 
these characteristics of an outbreak, the algorithms, and the data, can then be analyzed using data mining methods to 
identify the most appropriate algorithms to use for different types of surveillance (26; 27). In terms of guiding 
decision-making in near real-time, the efficiency of SnAP may allow public health decision-makers to evaluate the 
likely effect of different disease control options prior to initiating an intervention. 

Conclusion 
We have developed SnAP, a scalable, extensible, portable, and easily configurable platform for running high-
throughput simulation experiments. 
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